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Purpose & approach

= To assess the feasibility of utilizing a neutron flux trap in the AUTH sub-critical assembly
= Obtain a picture of the vertical flux profile
" The method used is DGNAA (Delayed Gamma Neutron Activation Analysis)

= 3 materials
= Au
= W
= Nij

= Final effective cross sections calculated with two methods
= Explicit function approximation
= |nterpolation based on local procedures
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The AUTH sub-critical assembly

= Student Training Reactor 9000

= Open-pool type, water moderated,
zero-power

= 1350 U__, fuel slugs in 270 rods

nat
= Hexagonal lattice, pitch=44.45 mm
=V,,/V; =152

" K. =0.842

= 5Ci 22AmBe source

= Max thermal flux: 2 — 4 -10% cm™2%s™1
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Irradiation inside the fuel grid

Reactions Flux region
= 197Au (n,y) °8Au Thermal &
epithermal
= 186 187
W (n,y) **'W (+ with Cd covers)
u 58Ni (n,p) 58CO Fast

Measurements taken at 29 cm radial distance
from centerline, at 7 vertical levels
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The flux traps

= Three identical flux traps

= 4 fuel rods displaced for each

= Diamond shape

= 96 cm? each

= Trap center at 29 cm from centerline

= Exact same irradiation setup as before
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Top view (Tripoli 4.8) &
flux trap geometry
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The flux traps

= Three identical flux traps

= 4 fuel rods displaced for each

= Diamond shape

" 96 cm? each

= Trap center at 29 cm from centerline

= Exact same irradiation setup as before
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Gamma-ray spectra

= Saturated Activities (SA) calculated through
decay gamma measurements

= HPGe detector, 42 % relative efficiency

= SPECTRW software
peak analysis

package used for

= Depending on the case, these parameters
were adjusted:
* Asymmetry
e Background type
* Peak de-convolution (if needed)
* FWHM
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= The saturated activity was calculated through

A Net ‘real
- SA = tive
(1—e Mir) e M (1-e~*real) y e(By)
= Where

* y:is the gamma-ray intensity

. E(Ey): is the detector efficiency for this energy,
sample geometry and composition. Also
corrects for photon self-absorption

= Self-shielding taken into account

" SAthermal — SAtotal o SAepithermal
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Cross sections & flux spectra modeling

Effective cross sections were calculated with

flfz (E)— dE

Oeff = E2d® |
fE1 dE

Usable functions had to be derived both for the diff. flux and the excitation functions

Two methods:
= Approximation with explicit function

= Piece-wise local interpolation
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Approximation with explicit function

; 58
Differential Flux Ni(n,p)™ Co, ENDF -VII.1
-2.-1 -1 o [barns]
d®/dE [em™“s "MeV ] : . ’
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1000 - i
i 02 |
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Generally OK, but fails at extremes and boundaries,

especially around the 0.5 MeV mark (opening point oeff = 0.072 £ 0.018 barns
for the 8Ni(n,p) reaction.
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Interpolation based on local procedures

SCENT 58
Differential  Flux Ni(n,p)™ Co, ENDF -VII.1
b /dE [om 25~ Ivev : o [bams] .
" function : " function
— 06 |-
: Bl data 05 F B data
107 + i
f 04 -
10 ¢ o.3f—
10 - 02"
| oaf
001 F E
E [MeV - E MRV
1079 10~ 0.001 1 (MVI T 5 10 15 0 VeV

Polynomial curves are fitted between data points
and combined in a machine-stored piecewise Oeff = 0.077 £ 0.019 barns
function. No analytical expression.
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Interpolation based

on local procedures

= Fast, easy to implement (with Mathematica)
= Works on the entire data

= Provides a fully usable function (continuous,
differentiable, integrable)

= Excellent approximation

= VVerified with ENDF results

= No analytical expression

= Function exists only inside the specific
software
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Interpolation based on local procedures

= Fast, easy to implement (with Mathematica) . o B function
Au(n,y)**® Au, ENDF -VII.1
= Works on the entire data o [bams]
— Bl data
= Provides a fully usable function (continuous, ﬂ
differentiable, integrable) ”

= Excellent approximation 10 ”

= VVerified with ENDF results

1.:\/ J U \
= No analytical expression -

0.00102 0.00104 0.00106 0.00108  0.00110

| E [MeV]

= Function exists only inside the specific
software 197Au(n,y) CS at resonance region

1 keV —1.1 keV
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Results — thermal flux
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90 % increase (105% in central)
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Results — fast & epithermal flux

58Ni(n,p)°8Co fast flux = ’;‘frmf' °°”ﬁ9f‘,"a“°t’_‘ Epithermal flux B Fuel grid weighted avg.
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Results — flux changes
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Results — reflection & vertical flux profile
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Thermal flux gain is much higher than
epithermal and fast flux losses

l

Thermal neutron reflection plays a major
role

On average, reflection contributes 73 %

On source level (0 cm): 89 %

[ Top position: consistently

thermal flux than bottom

All results indicate a downwards displacement of the
fuel elements — results influenced by axial reflection

3—4 June 2016 NCSR Demokritos

HNPS 2016

15 % - 40 % higher

15




Results — reflection & vertical flux profile
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Summary and conclusions

= DGNAA with Au, W, Ni and Cd covers
= 70 irradiations

= 29 cm distance from centerline

= 7 vertical positions

= Local interpolation approach for CS

= Comparison of thermal, epithermal and fast
flux, points to reflection playing a major
role

= High potential to increase usable thermal flux
in positions close to the 2!AmBe source

= Asymmetric vertical flux profile (non-cosine)
— displacement of active core region

= Average thermal flux increase in source level

by 105 %
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