A simple angle integration method for the determination of capture reaction cross sections

V. Michalopoulou-Petropoulou, V. Lagaki, M. Axiotis, V. Foteinou, A. Lagoyannis, G. Provatas and S.V. Harissopulos

Institute of Nuclear and Particle Physics, NCSR “Demokritos”

Outline

• Angle distribution method
• Angle integration method
• Future plans and conclusions
Angular distribution method

Capture reactions

For every beam energy and detection angle \rightarrow γ-ray energy spectrum
Cross section determination

\[\sigma_T = \frac{A}{N_A \xi} Y \]

- \(A \): atomic weight
- \(N_A \): Avogadro number
- \(\xi \): target thickness
- \(Y \): reaction yield \(\rightarrow Y = \sum_{i=1}^{N} (A_0)_i \)

Calculation of \((A_0)_i\):
- Spectrum analysis \(\rightarrow I(E_i^\gamma, E_{j\text{ beam}}, \theta_\kappa) \)
- Corrections \(\omega(\theta), \varepsilon_{\text{abs}}(\theta) \) \(\rightarrow I'(E_i^\gamma, E_{j\text{ beam}}, \theta_\kappa) \)
- Normalization \(Q \) \(\rightarrow Y(E_i^\gamma, E_{j\text{ beam}}, \theta_\kappa) \)
- Fit \(Y(\theta) \) with function:
 \[W(\theta) = A_0 (1 + \sum_k \alpha_k P_k(\cos \theta)), \quad k = 2, 4, \ldots \]
Step 1: Experimental determination of the differential gamma-production cross section

\[\frac{d\sigma_{\gamma}}{d\Omega} (E^\gamma_i, E^{\text{beam}}_j, \theta_\kappa) \]

Angle integration method*

- **Step 1:** Experimental determination of the differential gamma-production cross section
 \[\frac{d\sigma_\gamma}{d\Omega} (E_i^\gamma, E_j^{beam}, \theta_\kappa) \]

- **Step 2:** Determination of the angle-integrated gamma-ray production cross section
 \[\sigma_\gamma (E_i^\gamma, E_j^{beam}) \]

Angle integration method

- **Step 1**: Experimental determination of the differential gamma-production cross section

\[\frac{d\sigma_\gamma}{d\Omega} \left(E_\gamma^i, E_{j \text{beam}}, \theta_\kappa \right) \]

- **Step 2**: Determination of the angle-integrated gamma-ray production cross section

\[\sigma_\gamma \left(E_\gamma^i, E_{j \text{beam}} \right) \]

- **Step 3**: Determination of the reaction cross section for every beam energy

\[\sigma_T \left(E_{j \text{beam}} \right) \]

Angle integration

Step 2:

Differential gamma-production cross section:

\[
\frac{d\sigma_\gamma}{d\Omega}(\theta_\gamma) = \frac{\sigma_\gamma}{4\pi} \sum_k c_k P_k(\cos\theta_\gamma), \quad k = 0, 2, 4, ...
\]

Numerical integration of the differential cross section by the Gaussian quadrature method:

\[
\sigma_\gamma = 2\pi \int_{-1}^{1} \frac{d\sigma_\gamma}{d\Omega}(x)dx = 2\pi \sum_{i=1}^{n} w_i \frac{d\sigma_\gamma}{d\Omega}(x_i)
\]

\[x = \cos\theta, \quad n: \text{number of detectors}\]

Requirement: The sum gives the exact result for the integral → Calculation of the appropriate \(w_i, x_i\)
Determination of w_i, x_i

- $x_i = \cos \theta_i$ equals to the root of the Legendre polynomial P_{2n}
- The weight equals to:

<table>
<thead>
<tr>
<th>Number of detectors</th>
<th>Weight w_i</th>
<th>Angle θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 1$</td>
<td>2</td>
<td>55</td>
</tr>
<tr>
<td>$n = 2$</td>
<td>1.304</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>0.696</td>
<td>70</td>
</tr>
<tr>
<td>$n = 3$</td>
<td>0.936</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>0.722</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>0.343</td>
<td>21</td>
</tr>
</tbody>
</table>

Case of 2 detectors:

$$\begin{cases}
 w_1 + w_2 = 2 \\
 w_1 P_2(x_1) + w_2 P_2(x_2) = 0 \\
 w_1 P_4(x_1) + w_2 P_4(x_2) = 0
\end{cases}$$

Exact approach for polynomials of degree: $\leq 4n - 2$
Determination of w_i, x_i

- $x_i = \cos \theta_i$ equals to the root of the Legendre polynomial P_{2n}
- The weight equals to:

<table>
<thead>
<tr>
<th>Number of detectors</th>
<th>Weight w_i</th>
<th>Angle θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 1</td>
<td>2</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>n = 2</td>
<td>1.304</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>0.696</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>n = 3</td>
<td>0.936</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>0.722</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>0.343</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>159</td>
</tr>
</tbody>
</table>

Case of 2 detectors:

110° (or 70°) and 150° (or 30°) \rightarrow $P_4(\cos \theta) = 0$

$$\sigma_\gamma = 2\pi \left[w_1 \frac{d\sigma}{d\Omega} (110^\circ, E_{beam}) + w_2 \frac{d\sigma}{d\Omega} (150^\circ, E_{beam}) \right]$$
Step 3:

The reaction cross section for each beam energy is calculated using the formula:

$$
\sigma(E) = \sum_{i=1}^{N} \sigma_{\gamma}(E^\gamma, L_i \rightarrow g.s.)
$$

N: number of transitions that lead to the ground state

σ_{γ}: gamma-ray production cross-section for gamma-ray energy E^γ
Measurements by the angle integration method

Good agreement of the data with existing experimental data and with TALYS calculations

Future plans

Application of angle integration method to well known reaction

\[^{92}\text{Mo}(p, \gamma)^{93}\text{Tc} \]

Cross section measurement of proton capture reaction

\[^{66}\text{Zn}(p, \gamma)^{67}\text{Ga} \]
Conclusions

- Need for fewer detectors
- Less experimental data to be analysed
- Validation of the angle integration method for the calculation of capture reaction cross section
Thank you for your attention
<table>
<thead>
<tr>
<th>Number of detectors</th>
<th>$P_{2n} = 0$</th>
<th>Weight w_i</th>
<th>Angle θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 1$</td>
<td>0.57735</td>
<td>2</td>
<td>54.74</td>
</tr>
<tr>
<td>$n = 2$</td>
<td>0.33998</td>
<td>1.30429</td>
<td>30.56</td>
</tr>
<tr>
<td></td>
<td>0.86114</td>
<td>0.69571</td>
<td>70.12</td>
</tr>
<tr>
<td>$n = 3$</td>
<td>0.23862</td>
<td>0.93583</td>
<td>76.19</td>
</tr>
<tr>
<td></td>
<td>0.66121</td>
<td>0.72152</td>
<td>48.61</td>
</tr>
<tr>
<td></td>
<td>0.93247</td>
<td>0.34265</td>
<td>21.18</td>
</tr>
</tbody>
</table>
Solution of the equation system

For $k = 2$

\[\int_{-1}^{1} \frac{d\sigma}{d\Omega} (\cos\theta) d\cos\theta = \sum_{i=1}^{n} w_i \frac{d\sigma}{d\Omega} (\cos\theta_i) \]

\[\Gamma \alpha n = 2: \]

- \[\frac{d\sigma}{d\Omega} (\cos\theta_i) = 1 + c_2 P_2(\cos\theta_i) + c_4 P_4(\cos\theta_i) \]
- \[\int_{-1}^{1} \frac{d\sigma}{d\Omega} (\cos\theta) d\cos\theta = w_1 \frac{d\sigma}{d\Omega} (\cos\theta_1) + w_2 \frac{d\sigma}{d\Omega} (\cos\theta_2) \]
- \[\int_{-1}^{1} \frac{d\sigma}{d\Omega} (\cos\theta) d\cos\theta = \int_{-1}^{1} \{1 + c_2 P_2(\cos\theta_i) + c_4 P_4(\cos\theta_i)\} d\cos\theta = 2 + 0 + 0 \]

\[w_1 (1 + c_2 P_2(\cos\theta_1) + c_4 P_4(\cos\theta_1)) + w_2 (1 + c_2 P_2(\cos\theta_2) + c_4 P_4(\cos\theta_2)) = 2 \Rightarrow \]

\[\begin{cases} w_1 + w_2 = 2 \\ w_1 P_2(\cos\theta_1) + w_2 P_2(\cos\theta_2) = 0 \\ w_1 P_4(\cos\theta_1) + w_2 P_4(\cos\theta_2) = 0 \end{cases} \]