

National and Kapodistrian University of Athens

Experimental investigation of radiative proton-capture reactions relevant to nucleosynthesis

<u>A. Khaliel¹</u>, T.J. Mertzimekis¹, A. Psaltis¹, I. Psyrra¹, A. Kanellakopoulos¹, V. Lagaki¹, V. Foteinou², M. Axiotis², S. Harissopulos²

¹ Department of Physics, Zografou Campus, GR-15784, University of Athens, Greece ² Tandem Accelerator Lab, NCSR "Demokritos", Ag. Paraskevi, 15310, Greece

- Introduction
- Experimental Setup
- Data Analysis and Results
- Theoretical Modeling and Conclusions

Synthesis of heavy elements

- Charged-particle induced reactions become unlikely because of the large Coulomb barrier
- The bulk of heavy elements is synthesized via neutron capture reactions

Neutron-capture processes

- *s* process ($\rho_n = 10^8 \text{ cm}^{-3}$, $t_n \sim 10^3 \text{ y}$)
- *r* process ($\rho_n = 10^{20} \cdot 10^{25} \text{ cm}^{-3}, t_n \sim 1 \text{ s}$)
- The *p nuclei* cannot be synthesized via the above two processes

p process

- The *p* process is every process capable of synthesizing a *p* nucleus
- In general, the pre-existence of "seed" nuclei, previously made by the *s* and *r* processes is required
- The *p* nuclei can then be synthesized by various combinations of $(\gamma, n), (\gamma, p), (\gamma, \alpha)$ photodisintegration reactions as well as capture reactions: $(p,\gamma), (n,\gamma), (a,\gamma)$, along with β^+ decays and electron captures

Why focus on the reactions $^{nat}Ag(p,\gamma)^{108,110}Cd$?

- The study of ¹⁰⁸Cd is of special astrophysical interest because it is characterized by a very small abundance, compared to those of most of the heavier elements
- Cross section measurements of proton capture reactions (p,γ) as well as of their inverse reactions (γ,p) are important for the study of the p process

All the normalized overproductions would be equal to unity, if the derived abundance patterns were solar.

The Hauser-Feshbach model

$$\begin{array}{ccc} \mathbf{a} + \mathbf{X} \to \mathbf{C}^* \to \mathbf{C} + \gamma \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

• The transmission coefficients are determined by solving the Schrödinger equation, after choosing an appropriate **optical potential**, which describes sufficiently the interaction of the reactants.

High excitation energies require knowledge of the nuclear level density of the compound nucleus.
Especially for a (p,γ) reaction, the exit channel transmission coefficient is determined by the γ-ray strength function.

The astrophysical S-factor S(E)

By solving the Schrödinger equation and taking the limit $E \ll E_{\rm C}$:

$$\sigma(E) \propto \exp(-2\pi\eta)$$

where:

$$\eta = \frac{Z_{\rm a} Z_{\rm X} e^2}{\hbar \upsilon}$$

Also:

$$\sigma(E) \propto \pi \lambda^2 \propto \frac{1}{E}$$

The astrophysical *S*-factor is defined then as:

$$S(E) = E\sigma(E)\exp(2\pi\eta)$$

- The astrophysical S factor varies smoothly with energy compared to the cross section
- Allows for extrapolation to energy ranges where the experimental measurements are extremely difficult

The Van de Graaff Tandem Accelerator at N.C.S.R. "Demokritos"

5.5 MV Tandem Accelerator N.C.S.R. Demokritos. $E_p \approx 300 \text{ keV} - 10 \text{ MeV}.$

Detector Setup

Three HPGe detectors (100% rel. efficiency)

Detector	Angle [deg]	Distance [cm]
L1	165	20
L2	90	20
L3	0	30

Gamow windows for the reactions $^{nat}Ag(p,\gamma)^{108,110}Cd$

Beam energies studied: 2.2, 3.5, 4 MeV

Isotope	m _x [amu]	m _{ax} [amu]	T ₉	E ₀ [MeV]	Δ [MeV]	E ^p _{min} (LAB) [MeV]	E ^p _{max} (LAB) [MeV]
¹⁰⁷ Ag	106.905093	0.998413	1.7	2.263	1.331	1.613	2.957
			3.3	3.522	2.313	2.388	4.723
¹⁰⁹ Ag	108.904756	0.998584	1.7	2.265	1.331	1.613	2.956
			3.3	3.522	2.313	2.388	4.722

Data Analysis and Results

The reaction ¹⁰⁷Ag(p,γ)¹⁰⁸Cd

Level Scheme of ¹⁰⁸Cd

Data Analysis and Results

The reaction ¹⁰⁹Ag(p,γ)¹¹⁰Cd

Level Scheme of ¹¹⁰Cd

Angular Distributions

¹⁰⁹Ag(p,γ)¹¹⁰Cd

 1.5×10^{6} Energy (LAB) = 4000 keV-Energy (LAB) = 4000 keV 3x10⁵ 1.0×10^{6} $2x10^{5}$ 5.0×10^{5} 1×10^{5} ē 0.0 0 45 90 135 0 180 0 45 90 135 180 1.0×10^{5} Energy (LAB) = 3500 keV Energy (LAB) = 3500 keV Yield [cts mC⁻¹ 4π] 4.0x10⁵ 5.0×10^4 2.0×10^{5} Ī 0.0 0.0 45 90 135 0 180 45 90 135 0 180 $4x10^{4}$ 1×10^{5} Energy (LAB) = 2200 keV Energy (LAB) = 2200 keV $3x10^4$ $2x10^{4}$ 0 $1 \mathrm{x} 10^4$ 0 $-1x10^{5}$ 45 . 45 . 90 135 0 180 . 90 135 0 180 Angle (deg) Angle (deg)

¹⁰⁷Ag(p,γ)¹⁰⁸Cd

 $W(\theta) = A_0(1 + a_2 P_2(\cos \theta) + a_4 P_4(\cos \theta) + ...)$

 $\sigma = \frac{A}{N_p N_A \xi} \sum_{i=1}^N (A_0)_i$

Theoretical nuclear models

- The theoretical results were calculated with the TALYS 1.6 and EMPIRE (MALTA) codes
- Input: Optical potentials, Nuclear Level Densities and $\gamma\text{-ray}$ strength function models

Combination	Optical Potential Model	Nuclear Level Density Model	γ-ray strength function model
TALYS 1	Koning-Delaroche	СТМ	Kopecky-Uhl
TALYS 2	Bauge-Delaroche- Girod	Demetriou-Goriely	Hartree-Fock-BCS
TALYS 3	Bauge-Delaroche- Girod	Goriely-Hilaire	Hartree-Fock- Bogolyubov
TALYS 4	Bauge-Delaroche- Girod	Temperature Dependent HFB	Goriely's Hybrid Model
EMPIRE	Koning-Delaroche	EGSM	Plujko MLO1

Theoretical Modeling and Conclusions

Results

University of Athens, 2016

- An attempt to measure cross sections and S-factors of the reactions ^{nat}Ag(p,γ)^{108, 110}Cd, was carried out for the first time at an astrophysically relevant energy range
- Overall agreement between the data and the theoretical calculations seems satisfactory
- Need for further investigation both in experimental (angular distributions) and theoretical (sensitivity analysis) level

Acknowledgement

To the staff of the Tandem Accelerator Laboratory for the excellent cooperation both in scientific and technical level

Additional

Solar System Abundances

- Most of the solar system consists of H (71.1 %) and He (27.4 %)
- Minimum at 5 < A < 11, corresponding to the elements Li, Be and B
- Maximum at 50 < A < 65 (*iron peak*)
- Isotopic abundances with A > 80 are on average 10^{10} greater than H

Palme H. and Beer H. (1993)

Question: How did the elements-isotopes form?

Abundance evolution and reaction networks

Astrophysical Sites

Nucleosynthetic Mechanisms

B²FH and Cameron:

- Elements are formed inside stars via various thermonuclear reactions
- Foundations of the theory of *stellar nucleosynthesis*

E. Margaret Burbidge, G. R. Burbidge,
William A. Fowler, and F. Hoyle. Synthesis of the elements in stars. *Rev. Mod. Phys.*, 29:547, 1957.
A. G. W. Cameron. Nuclear reactions in stars and nucleogenesis. *Pub. Astron. Soc. Pac.*, 69:201, 1957.

Εισαγωγή

Reaction network for the p process

- The p process network invovles about 20,000 reactions, involving over 1,000 isotopes
- Solutions rely on theoretical calculations, using the statistical Hauser-Feshbach model.

Εισαγωγή

The reaction occurs in two stages:

- Formation of a compound nucleus of a relatively large lifetime.
- Subsequent decay of the compound nucleus, *independent* of the entrance channel

$$\sigma_{\alpha\beta} = \sigma_{\rm CN}(\alpha) P_{\beta}$$

Gamow formalism

$$\left\langle \sigma \upsilon \right\rangle_{\mathrm{aX}} = \left(\frac{8}{\pi m_{\mathrm{aX}}}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty S(E) \exp\left(-\frac{E}{kT} - \frac{b}{E^{1/2}}\right) dE$$

For non-resonant reactions, the *S* factor is constant over a small energy interval:

Theoretical Framework

The reaction ¹⁰⁷Ag(p,γ)¹⁰⁸Cd

- Measurement of the photopeak corresponding to the transition:
 2⁺→ 0⁺, for every angle:
 0°, 90°, 165°
- Determination of the angular distribution of the reaction
- Determination of the cross section and *S* factor

Data Analysis and Results

The reaction ¹⁰⁹Ag(p,γ)¹¹⁰Cd

- Μέτρηση της φωτοκορυφής που αντιστοιχεί στη μετάπτωση: 2⁺→ 0⁺, για τις γωνίες: 0°, 90°, 165°.
- Προσδιορισμός της γωνιακής κατανομής της για κάθε ενέργεια δέσμης.
- Υπολογισμός της ενεργού διατομής και του αστροφυσικού παράγοντα.

Reaction rate

- For a reaction a + X
 → b + Y in a stellar
 environment:
- Represents the number of reactions per unit time per unit volume.
- Cross section appears explicitly, and is calculated via the Hauser-Feshbach statistical model.

$$\sigma\upsilon\rangle_{aX} = \left(\frac{8}{\pi m_{aX}}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_{0}^{\infty} E\sigma(E) e^{-E/kT} dE$$

Data analysis

Evaluation of the cross section and S-factor

$$Y(E_i^{\gamma}, E_j^p, \theta_k) = \frac{N(E_i^{\gamma}, E_j^p, \theta_k)\omega(E_j^p, \theta_k)}{\epsilon_{abs}Q(E_j^p)}$$
$$W(\theta) = A_0(1 + a_2P_2(\cos\theta) + a_4P_4(\cos\theta) + \dots$$
$$\sigma = 2.6565 \times 10^{-10} \frac{A}{\xi} \sum_{i=1}^{N} (A_0)_i \text{ [barns]}$$

Data analysis

Spectra and angular distributions

Typical reaction spectrum at beam energy of 4 MeV, and angle of 90°.

Πυρηνοσυνθετικοί Μηχανισμοί

B²FH και Cameron:

Τα στοιχεία
 δημιουργούνται στους
 αστέρες μέσω διαφόρων
 θερμοπυρηνικών
 αντιδράσεων.

Θεμελίωση της θεωρίας
 της αστρικής
 πυρηνοσύνθεσης.

E. Margaret Burbidge, G. R. Burbidge, William A. Fowler, and F. Hoyle. Synthesis of the elements in stars. *Rev. Mod. Phys.*, 29:547, 1957. A. G. W. Cameron. Nuclear reactions in stars and

nucleogenesis. *Pub. Astron. Soc. Pac.*, 69:201, 1957.

Σύνθεση ελαφρύτερων πυρήνων

- Καύση Υδρογόνου
- Καύση Ηλίου
- *l*-διεργασία:
 σύνθεση των ελαφρών
 πυρήνων
 D-Li-Be-B
- Καύση Άνθρακα,
 Οξυγόνου και Νέου:
 16<A<28
- Καύση Πυριτίου: 28<Α<60

Σύνθεση βαρύτερων πυρήνων

- s διεργασία
- r διεργασία
- p διεργασία

Εισαγωγή

Σύνθετος πυρήνας για αντιδράσεις (p,γ)

Μετρήσεις In-beam

- Βομβαρδισμός του στόχου σε ενέργειες 2.2, 3.5 and 4 MeV.
- Μέτρηση των ακτινών γ που τροφοδοτούν τη βασική στάθμη του σύνθετου πυρήνα.
- Διόρθωση ως προς την απόλυτη ανιχνευτική ικανότητα και ως προς τη γωνιακή κατανομή.
- Υπολογισμός της ενεργού διατομής και του αστροφυσικού παράγοντα.

$$\sigma = \frac{A}{N_p N_A \xi} \sum_{i=1}^{N} A_0)_i$$

$$W(\theta) = A_0 1 + a_2 P_2(\cos \theta) + a_4 P_4(\cos \theta) + ...)$$

$$S(E) = E\sigma(E) \exp\left(0.9895 Z_{\rm a} Z_{\rm X} \sqrt{\frac{m_{\rm aX}}{E}}\right)$$

Experimental Setup

•

Backing: Au, Ta.

x = 0.437 nm $\xi = \rho x = 458 \ \mu g \ cm^{-2}$ $\xi_{nom} = 420 \ \mu g \ cm^{-2}$

Absolute detector efficiencies

- Introduction
- Experimental Setup

- Introduction
- Experimental Setup
- Data Analysis and Results

- Introduction
- Experimental Setup
- Data Analysis and Results
- Theoretical Modeling and Conclusions

Abundances of p nuclei

p nucleus	(%)	p nucleus	(%)	p nucleus	(%)
⁷⁴ Se	0.89	¹¹⁴ Sn	0.659	¹⁵⁶ Dy	0.056
⁷⁸ Kr	0.362	¹¹⁵ Sn	0.339	¹⁵⁸ Dy	0.095
⁸⁴ Sr	0.5580	¹²⁰ Te	0.096	¹⁶² Er	0.139
⁹² Mo	14.525	¹²⁴ Xe	0.129	¹⁶⁴ Er	1.61
⁹⁴ Mo	9.151	¹²⁶ Xe	0.112	¹⁶⁸ Yb	0.12
⁹⁶ Ru	5.542	¹³⁰ Ba	0.106	¹⁷⁴ Hf	0.162
98Ru	1.869	¹³² Ba	0.101	¹⁸⁰ Ta	0.0123
¹⁰² Pd	1.02	¹³⁸ La	0.091	^{180}W	0.120
¹⁰⁶ Cd	1.25	¹³⁶ Ce	0.186	¹⁸⁴ Os	0.020
¹⁰⁸ Cd	0.89	¹³⁸ Ce	0.250	¹⁹⁰ Pt	0.014
¹¹³ In	4.288	¹⁴⁴ Sm	3.073	¹⁹⁶ Hg	0.15
¹¹² Sn	0.971	¹⁵² Gd	0.2		

All the normalized overproductions would be equal to unity, if the derived abundance patterns were solar.

The *p* nuclei are characterized by their small contribution to the corresponding elemental abundance